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Abstract. In this paper we study search heuristics for box decomposition methods that solve prob-
lems such as global optimization, minimax optimization, or quantified constraint solving. For this
we unify these methods under a branch-and-bound framework, and develop a model that is more
convenient for studying heuristics for such algorithms than the traditional models from Artificial
Intelligence. We use the result to prove various theorems about heuristics and apply the outcome to
the box decomposition methods under consideration. We support the findings with timings for the
method of quantified constraint solving developed by the author.
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1. Introduction

In box decomposition methods for problems such as global optimization (Hansen,
1992; Ratz, 1992; Kearfott, 1996b), minimax optimization (Shen et al., 1990; Jaulin
et al., 2001c) and quantified constraint solving (Ratschan, 2001a, b; Jaulin et al.,
2001b) that proceed by decomposing the search space into boxes, heuristics for
choosing boxes critically influence the run-time of the algorithms. Such search
heuristics have been developed for global optimization (Moore and Ratschek, 1988;
Ratz, 1992; Csendes, 2001) but it is not obvious how they can be applied to meth-
ods for solving the other problems mentioned.

The contribution of this paper is the clarification of how such heuristics can
be used in the above box decomposition methods, and a common framework for
studying them. This framework consists of: first, a formulation of the methods un-
der consideration as branch-and-bound algorithms (that may be nested in the sense
that we branch and bound on the result of further branch-and-bound procedures).
Second, a formal model for according heuristic search that takes into account the
specifics of box decomposition methods, without restricting itself to unnecessary
algorithmic details. This makes the result better suited for our problems than the
classical models from Artificial Intelligence (Nilsson, 1982; Pearl, 1984).

We demonstrate the relevance of the developed framework by showing how
and why the box choice heuristics available in the literature for global optimization
(Moore and Ratschek, 1988; Ratz, 1992; Csendes, 2001) can be applied to minimax
optimization (Shen et al., 1990) and approximate quantified constraint solving
(Ratschan, 2001a). The author believes that the presented framework
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provides an ideal basis for further exploration of heuristics for box decomposition
algorithms and even general space decomposition methods in continuous domains.

The structure of the paper is as follows: In Section 2 we present our formu-
lation of box decomposition methods as nested branch-and-bound algorithms; in
Section 3 we develop a model of heuristic search in such algorithms; in Section 4
we apply the results to the box decomposition methods under consideration; in
Section 5 we do some timings for the application of the resulting heuristics in
quantified constraint solving; in Section 6 we discuss related work; and in Section 7
we make final conclusions.

2. Nested branch-and-bound algorithms

We want to develop heuristics for algorithms that use box decomposition to solve
problems such as the following:

Global Optimization: Given a function f : D → R, where D ⊆ R
n, find its

global minimum.

Minimax Optimization: Given a function f : D1 × · · · × Dn → R, where D1 ×
· · · × Dn ⊆ R

n, find

min
x1∈D1

max
x2∈D2

. . . min
xn−1∈Dn−1

max
xn∈Dn

f (x1, . . . , xn).

Quantified Constraint Solving: Given a first-order formula over the reals (Ebbing-
haus et al., 1984), that is, an expression that contains quantifiers (∃, ∀), con-
nectives (∧, ∨, ¬, ⇒), predicate symbols (e.g., =, <, �), function symbols
(e.g., +, −, ×, sin, exp), rational constants and variables ranging over the
reals, find its solution set (or truth-value in the case of a closed formula).

A naive application of game tree search methods from Artificial Intelligence
(Nilsson, 1982; Pearl, 1984) to minimax optimization would start from the obser-
vation that a minimax optimization problem represents a game tree for which each
tree level represents a certain variable, each node has infinitely many children (one
for each substitution of a real constant for the according variable), and the weight
of a tree leaf is given by the value of the function f at the according constant.
However, game tree search methods are restricted to locally finite trees, that is, to
trees for which every node has finitely many children.

One can search locally finite trees by extracting one child after the other from a
node. However, this is impossible for infinite trees, and so we recursively split the
infinite set of children into (finitely many) pieces and prune branches on which we
can prove that no solution can be found. This is just branch-and-bound search. In
the following we will illustrate this fact on the example of minimax optimization
(Shen et al., 1990; Jaulin et al., 2001c) and then apply the findings to the other
problems.
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Assume that we want to find minx∈[0,10] maxy∈[0,10] xy + 1. By taking the range
of xy + 1 on [0, 10] × [0, 10], which is the interval [0, 101], we can infer that the
resulting minimax value also is in this interval.

For refining the result we do a branching step that splits the range [0, 10] of x

into the pieces [0, 5] and [5, 10], resulting in

min{ min
x∈[0,5]

max
y∈[0,10]

xy + 1, min
x∈[5,10]

max
y∈[0,10]

xy + 1},

Here we can infer the bound [0, 5][0, 10] + 1 = [0, 51] for the first branch, and
[5, 10][0, 10] + 1 = [0, 101] for the second one, resulting in an improved overall
bound [0, 51].

Now we can continue to improve this bound by doing further branching along
the variable x, and by computing bounds on the resulting branches. Note however,
that for making these bounds converge, we have to do branching along the variable
y as well. This means that, nested within the branch-and-bound procedure wrt.
the variable x, we use the results of another branch-and-bound procedure wrt. the
variable y.

If we always branch into pieces that consist of floating point intervals, we can
compute the necessary bounds as follows:

− For functions that contain the usual arithmetical symbols such as addition,
multiplication, or trigonometric functions we can use interval arithmetic
(Moore, 1966; Kearfott, 1996b),

− a bound of a function of the form minx∈D′ f (x, y) on the set D is given by the
bound of f on D × D′,

− a bound of a function of the form min{f, g} on the set D is given by [min{f ,

g}, min{f , g}], where [f , f ] is the bound of f on D, and [g, g] is the bound
of g on D, and

− a bound of a function of the form max{f, g} on the set D is given by [max{f ,

g}, max{f , g}], where [f , f ] is the bound of f on D, and [g, g] is the bound
of g on D.

The last two cases correspond to their usual treatment in interval arithmetic
(Kearfott, 1996a), the second case gives a very crude overestimation of the actual
value, but it improves due to branching.

By replacing the computed upper and lower bounds by Boolean values and by
defining a similar interval overestimation for ∀, ∃ and the Boolean functions ∨, ∧,
and ¬, we get an algorithm for quantified constraint solving, and by minimizing
a function on all its variables at once we get global optimization. The resulting
algorithms are simplified versions of the original ones (Ratschek and Rokne, 1988;
Shen et al., 1990; Hansen, 1992; Ratz, 1992; Kearfott, 1996b; Ratschan, 2001a),
that keep the essentials needed for studying which sub-expression to choose for
branching.
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Figure 1. Search Tree

For studying this problem we will first develop an abstract formal model. Then
we will consider various relevant heuristics within this model, and at last we will
apply the result to the above algorithms.

3. Box choice heuristics

In this section we assume familiarity of the reader with the notion of a tree, and
sub-tree, root, node, leaf, and path of a tree, and child, ancestor, and depth of a tree
node. Given a sequence q and a property P , we say that q eventually fulfills P if
there is a k such that for all i � k, qi fulfills P .

Recall that for implementing a branch-and-bound scheme for minimization we
split one of the elements of min{minx∈D1 f, . . . , minx∈Dn

f } into pieces. We want to
study heuristics for choosing the optimal element. For this we use a representation
of such branch-and-bound schemes that abstracts from all unnecessary details and
just reflects its branching structure.

We use a tree for which the root is marked with the set D of the initial symbol
minx∈D, maxx∈D, ∃x ∈ D or ∀x ∈ D, and each node is marked with a subset of
D created by branching. We call such a tree a search tree and the sets at the nodes
search domains.

Each branching step takes a leaf L with search domain D, splits D into pieces
D1 and D2, and attaches according new leaves to L. For example, Figure 1 repres-
ents the search tree created when branching according to the example in Section 2.

Note that such a search tree just represents branching wrt. one variable. How-
ever, its nodes can capture a sub-expression of the input on which we can again
apply a branch-and-bound scheme wrt. a different variable. For a branch-and-
bound scheme that appears nested within another one, each branching of the outer
scheme splits the inner schemes into two duplicates.

Now we mark paths along which all search domains contain a solution of the
problem as solution paths (similar trees already have been used by Lawler and
Wood (1966) to visualize branch-and-bound methods). For example, in global op-
timization and minimax optimization these are the paths containing optimizers.
Since we cannot follow infinite paths throughout, in practice one usually finishes
after following a solution path to a certain depth.

By using a breadth-first search in such a search tree we can now explore a solu-
tion path up to the desired depth. However, breadth-first search eventually expands
the whole tree, which is very inefficient. So we want to find a better method. For
this we adapt best-first search (Nilsson, 1982; Pearl, 1984) to our model and show
how this results in special heuristics for box choice.
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We use a merit function r that assigns a real value to a tree node and assume
that branching always chooses the element of highest merit, where ties are broken
in an arbitrary way.

Then a certain merit function r results in a sub-tree of a search tree T as follows:
Assume a function expandr,T (the expansion function) that takes a subtree S of T

and returns S plus all the children of the leaf of T with maximal merit according
to r, where ties are broken in an arbitrary way. Furthermore we define that the
application of expandr,T to the empty tree {} results in the root of T .

Recursive application of the expansion function, beginning with the empty tree
results in a tree expand∞

r,T ({}) (the smallest tree that contains all elements of
{expandi

r,T ({})|i ∈ N}, or in other words, the least upper bound of {expandi
r,T ({})|i ∈

N}, see any textbook on denotational semantics (Schmidt, 1988) for similar con-
structions). Note that this usually results in a tree with paths of infinite length. The
resulting sub-tree of a search tree T models the set of all search trees created when
box choice uses a certain merit function r. Now we study the properties of the
resulting search:

DEFINITION 1. A merit function r is complete for a tree T iff the tree expand∞
r,T

({}), contains a solution path. A complete merit function r is weak for a tree T iff
expand∞

r,T ({}) = T , otherwise it is strong.

Note that we only look for one solution path in this paper, because this is sufficient
for quantified constraint solving (see Section 4). The following results can be easily
reformulated for finding all solution paths. Now we need to choose a merit function
for which a search will eventually follow at least one solution path to arbitrary
depth. That is, we want to have complete merit functions.

THEOREM 1. Given a merit function r, and a finite set of infinite paths P in
a tree T , if there is a path p in P s.t. for all nodes N in P all paths not in P

eventually have merit lower than N then at least one element of P is contained in
expand∞

r,T ({}).
Proof. Assume that there is a path p in P s.t. for all nodes N in P all paths not

in P eventually have merit lower than N .
First we prove that expand∞

r,T ({}) contains infinitely many nodes contained in
P . For this we prove that for all i, there is a k > i, such that expandk

r,T ({}) contains
at least one more node from P than expandi

r,T ({}).
Let N be the node of p which is a leaf of expandi

r,T ({}). By our assumption
there is a k > i such that all leaves of expandk

r,T ({}) not in P have merit lower than
N . Thus expandk+1

r,T ({}) contains one more element of P than expandi
r,T ({}).

This means that expand∞
r,T ({}) contains infinitely many nodes contained in P

and thus, by König’s lemma, it contains an infinite path, and this path is an element
of P . �
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COROLLARY 1. Given a merit function r and a search tree T with finitely many
solution paths, if there is a solution path in T on which for all nodes with merit M,
all non-solution paths eventually have merit lower than M, then r is complete for
T .

The theory of heuristic search provides analogous theorems for searching graphs
(e.g., Theorem 1, page 104 of the book by Pearl (Pearl, 1984)).

COROLLARY 2. If the merit function goes to −∞ on all non-solution paths of a
tree T with finitely many solution paths then it is complete for T .

By applying Theorem 1 to each path we get:

COROLLARY 3. If the merit function goes to −∞ on all paths of a tree T , then
it is complete but weak for T .

Now we prove a theorem on when paths will not be expanded:

THEOREM 2. Given a merit function r and a search tree T , if on a path P the
merit is eventually smaller than the merit of all nodes on another path P ′, then
expand∞

r,T ({}) does not contain P .
Proof. Assume that on P the merit is eventually smaller than the merit of all

nodes on another path. Then there is an n such that the merit of the node N of P

which is a leaf of expandn
r,T ({}), is smaller than the merit of the leaf belonging to

P ′. So N will never be expanded, that is, it is a leaf of expandk
r,T ({}), for all k � n.

This means that that expand∞
r,T ({}) does not contain P . �

COROLLARY 4. A merit function r that has a lower bound on all solution paths
of a tree T and that is eventually smaller than the smallest such bound on all
non-solution paths of T , is complete and strong for T .

Proof. By Theorem 1 all solution paths are in expand∞
r,T ({}), and by Theorem 2

all non-solution paths are not in expand∞
r,T ({}). �

Now we introduce a new type of search behavior:

DEFINITION 2. A merit function r is depth-first wrt. a path P in a tree T iff for
all nodes N of other paths P ′ the merit of P is eventually greater than the merit of
N .

Clearly a merit function is depth-first wrt. every path with infinite limit. Depth-first
behavior is only desired for solution paths — otherwise, if we ever explore such a
path to a certain depth, we will not be able to explore any other path from then on.

4. Application to box decomposition algorithms

Within this section we will restrict all our considerations to search trees with fi-
nitely many solution paths. We start with the situation when no special information
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about the sub-trees is available. This means that a merit function can only use
information about the depth of a node in the search tree.

The merit function should not increase with the depth, because otherwise the
function would show dangerous depth-first behavior. By Corollary 3 we can use
the negative depth of a node in the tree, but in this case we still search the whole
tree. We are also in a similar situation if we use information about search domains
such as their volume or maximal side-length (heuristics of this type have been used
in global optimization (Hansen, 1992; Kearfott, 1996b) or minimax optimization
(Shen et al., 1990)).

Now we consider the situation where we can use the bounds computed in a
branch-and-bound approach (as defined in Section 2). For any node N we denote
the according lower bound by N and upper bound by N . The limit of N − N goes
to zero along all paths, and N is monotonically decreasing, and N is monotonically
increasing. Furthermore we assume that our problem is posed in such a way that
both the limit of N and the limit of N is strictly smaller on solution paths than
on non-solution paths (which is the usual case for minimization problems). Our
question is: Which merit function should we choose?

A classical merit function (Moore and Ratschek, 1988) is rB(N) := −N . It is
complete by Corollary 4. In fact, this is the only reasonable complete merit function
because any merit function that takes N into account is not complete for all search
trees:

THEOREM 3. For every merit function r(N,N) that has a lower bound on non-
solution paths, and for which for every N ∈ R,

lim
N→∞

r(N,N) = −∞

there is a search tree for which it is not complete.
Proof. Assume such a merit function. We construct a search tree such that for

all nodes of the tree that split into a solution path and a non-solution path, the merit
of the first node Ns on the solution path is smaller than all the merits on the non-
solution path (this can be done because of the lower bound on non-solution paths).
For such a search tree no solution path will be fully expanded.

We construct this tree by letting Ns be arbitrary but letting Ns be such that
r(Ns,Ns) is smaller than the merit of all nodes on the non-solution path. Such a
Ns exists because r(N,N) goes to negative infinity as N goes to infinity. �

For example the negative of the average of the bounds −N+N

2 has these proper-
ties, but also every other reasonable combination of N and N .

By Corollary 4 we even get:

THEOREM 4. The merit function rB is strong for all search trees.

So rB is the optimal merit function for all branch-and-bound algorithms that fit
into our model and have only information about the bounds N and N available.
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For example one can improve the algorithm by Z. Shen and others (Shen et al.,
1990) by replacing the highest width merit function used there by rB .

Now we assume that we have even more information available: The global
minimum, or at least a good approximation of the global minimum. Lately a merit
function that uses this information has appeared, the reject index (Casado et al.,
2001; Csendes, 2001). It is defined as follows:

rR := f̃ − N

N − N

Here f̃ is an approximation of the global minimum of f .
Now let us study how the value f̃ influences the convergence of search al-

gorithms. First note the following two observations:

− The limit of rR is ∞ on all paths for which the limit of N is smaller than f̃ .
− The limit of rR is −∞ on all paths for which the limit of N is bigger than f̃ .

Now let us assume that f̃ is a constant that is strictly bigger than the limit of N

(and equally N) on solution paths. In this case rR goes to ∞ for all solution paths,
but possibly also for some non-solution paths.

LEMMA 1. The merit function rR is eventually monotonically increasing on all
paths for which the limit of N is smaller than f̃ .

Proof. We have to prove that on all such paths there is a node N such that the
path is monotonically increasing beginning from N . Choose a node N such that N

is smaller than f̃ . To prove that rR increases we show that f̃ − N decreases by a
smaller fraction than N − N on P beginning from N . This is surely the case since
N < N < f̃ there. �
Now we get (compare with Theorem 1 in the paper by Csendes (2001)):

THEOREM 5. The merit function rR is depth-first wrt. the paths for which the
limit of N is smaller than f̃ .

It is easy to find search trees for which rR will do a depth-first search into a
non-solution path, and we get:

COROLLARY 5. If f̃ is strictly larger than the limit of N (or equally N) on
solution paths, then there is a search tree for which the reject index is not complete.

In fact we cannot hope that it will be complete for any but a few search trees. So in
this case the reject index will usually not find a solution path.

Now let us assume that f̃ is strictly smaller than the limit of N (or equally N)
on solution paths. Then rR goes to −∞ on all paths, even if f̃ is not constant but
varies for each computation of rR . We get by Corollary 2 (compare with Theorem 2
in the paper by Csendes (2001)):
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THEOREM 6. If f̃ is smaller or equal the limit of N (or equally N) on solution
paths, then the reject index is complete for all search trees.

So we can use the reject index for our computation if we ensure that f̃ underestim-
ates the global minimum. However, by Corollary 3, if f̃ does not converge to the
global minimum, then we still do breadth-first search:

THEOREM 7. If f̃ is smaller or equal the limit of N (or equally N) on solution
paths, but does not converge to the global minimum, then the reject index is weak
for all search trees.

However, if the approximation f̃ is good, then by Corollary 4 our search behavior
is better (compare with Theorem 3 in the paper by Csendes (2001)):

THEOREM 8. If f̃ goes to the global minimum from below and is greater or
equal than N for all nodes N on solution paths, then the reject index is complete
and strong for all search trees.

However, if we use the best currently available bound on the global minimum as
the approximation f̃ , then the reject index does not give any improvement over rB :

THEOREM 9. If for all i, f̃ is equal to the minimal N of leaf nodes N of expandi
rR,T

({}), then expand∞
rR,T ({}) = expand∞

rB,T ({}).
Proof.
We prove that in this case expandrR,T always expands the same node as

expandrB,T . Then the theorem holds by induction.
Let T be a tree and let N be the leaf of T chosen by rB . This means that rB(N) =

−N is maximal, that is, N is minimal. So the value of rr(N) is N−N

N−N
= 0. For all

other nodes the value of the reject index is negative. Thus N will be also chosen by
the reject index. �
Now let us apply our results to quantified constraint solving. Consider the example
of a constraint of the form (∀x) f (x) � 0. Here one of the two following cases can
occur:

− The whole constraint is true, that is, f (x) � 0 is true for all x.
− The whole constraint is false, that is, f (x) � 0 is false for at least one x.

However, we do not know beforehand, in which situation we are in, that is, whether
to look for x where f (x) � 0 is true or where it is false. But observe that in the
first case we have to prove the truth of f (x) � 0 for all x anyway. This means that
in this case all search heuristics are equally efficient. But when f (x) � 0 is false
somewhere, then we have to find an x that proves this as fast as possible. Thus
we can always use heuristics that are optimal for the second case. A similar dual
argument holds for existential quantification.
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Now it remains to investigate for which x, we can prove fastest that f (x) � 0 is
false. Clearly this is the global minimum of f . Thus we use exactly the same box
choice heuristics for quantified constraint solving as for minimax optimization.
One can even reformulate quantified constraint solving as a minimax optimization
problem followed by a sign computation, for example when studying the numer-
ical stability of quantified constraint solving (Ratschan, 2000b), or when designing
algorithms in the area (Shary, 1996).

5. Timings

We did experiments on the use of various merit functions in approximate quantified
constraint solving (Ratschan, 2001a), resulting in the timings listed in Table 1. The
examples are from robust control (Dorato et al., 1997) (problem name starts with
C) and computational geometry (McCallum, 1993) (problem name starts with M).
The columns marked with rV refer to a merit function which uses the volume of a
box (this is the original merit function that we used), rB denotes the merit function
−N for universal quantification and the dual N for existential quantification, and
rR denotes the reject index and its dual.

The columns marked with T designate the time (in seconds), and the columns
marked with A designate the number of refinements of atomic constraints. A re-
finement of an atomic constraint can be a range computation for the according
polynomial or a tightening step (Hong and Stahl, 1994) — this refinement usually
takes about 60% of the runtime, and thus is a very good measure for the quality of
heuristics.

As one can see, the reject index needs exactly as many atomic refinements as
rB , which confirms Theorem 9. Clearly our heuristics improve the behavior of the
algorithm. Note furthermore that the examples M4, M21, M24 and M24 need
the same number of atomic refinements for all cases. The reason is, that all these
examples have the form ∃�x p(�x), without free variables, and furthermore they are
false. As discussed in Section 4 this means that we have to prove that p(�x) is false
for all �x, anyway, and no search heuristics can change this.

6. Related Work

Related work on search heuristics has either been restricted to very specific al-
gorithms (e.g. in global optimization or constraint satisfaction) (Moore and Rats-
chek, 1988; Ratz, 1992; Berner, 1996; Hentenryck, 1997; Csendes, 2001; Fernan-
dez and Hill, 2001), to specific algorithm inputs (Ratschek and Rokne, 1993; Puget
and Hentenryck, 1998), to discrete domains (Ibaraki, 1976), or it has been done
from a general viewpoint of heuristic search (Nilsson, 1982; Pearl, 1984) but with
an orientation toward problems specific to Artificial Intelligence (e.g., game tree
search, automated reasoning).
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Table 1. Timings

Problem rV rB rR 100 rB
rV

T A T A T A T C

C01a 3.7 2285 0.2 283 0.2 283 5 12

C05b 47.3 5856 47.0 5852 46.6 5852 99 100

C05c 0.2 144 0.2 160 0.2 160 100 111

C08a 0.1 30 0.1 25 0.1 25 100 83

C12b 1.7 1799 1.4 1512 1.4 1512 82 84

C14a 0.5 81 0.3 55 0.3 55 60 68

C16a 0.4 679 0.3 474 0.3 474 72 70

C19a 11.6 3986 3.4 1754 3.5 1754 29 44

C21a 46.9 419 34.6 351 34.6 351 74 84

C24 1.5 2668 0.7 1333 0.7 1333 43 50

M1 0.4 74 0.2 52 0.3 52 50 70

M3 0.9 179 0.6 120 0.5 120 67 67

M4 0.2 44 0.2 44 0.2 44 100 100

M5 0.8 162 0.4 90 0.4 90 50 56

M8 0.7 108 0.6 103 0.6 103 86 95

M21 0.3 83 0.3 83 0.3 83 100 100

M22 0.4 86 0.3 86 0.4 86 75 100

M23 0.2 364 0.1 196 0.2 196 50 54

M24 0.5 124 0.5 124 0.5 124 100 100

Sum 118.3 19171 91.2 12697 91.1 12697 77 66

Average 71 76

For algorithms in global optimization Moore and Ratschek (1988) discuss cor-
rectness and termination of global optimization algorithms and different box choice
criteria. Ratz (1992; §2.2.5.1) uses a variant of the smallest lower bound criterion
with an additional criterion for breaking ties. Berner (1996) discusses the properties
of various box choice strategies, and Csendes (2001) investigates the reject index.
For general discussion see various books on the subject (Ratschek and Rokne,
1988; Hansen, 1992; Kearfott, 1996b).

Heuristics for branch-and-bound algorithms for discrete domains, already were
discussed very early (Lawler and Wood, 1966; Mitten, 1970) and have later been
theoretically justified, for example using stochastic models (Wah and Yu, 1985).
They are especially important for parallel branch-and-bound (Clausen and Per-
regaard, 1999).

Related research in Artificial Intelligence (Nilsson, 1982; Pearl, 1984) studies
search procedures for two major classes of objects: (Locally finite) graphs (Dechter
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and Pearl, 1985; Farreny, 1999), and (locally finite) AND/OR graphs (especially
game trees) (Stockman, 1979; Mahanti and Bagchi, 1985; Palay, 1985; Ibaraki,
1986; Abramson, 1989; Reinefeld and Ridinger, 1994; Korf, 1995; Korf and Chick-
ering, 1996; Plaat et al., 1996). Our most general case of nested branch-and-bound
corresponds to the second case, but has to search a tree at each level, because we
have to deal with locally infinite trees.

Main differences of our framework to heuristic search algorithms from Artificial
Intelligence are the following: First, we do not have goal nodes — instead we are
interested in solution paths that can be infinite. Second, we do not define the quality
of a solution — we are just interested in finding a solution as fast as possible. Third,
we have bounds N and N available that we can use for computing the merit of a
node N (up to our knowledge the only algorithms from AI that use such bounds
are the ones by Ibaraki (1986), and Berliner’s B∗ (Berliner, 1979; Palay, 1982)).

There have been several efforts to unify heuristics in discrete branch-and-bound
with heuristic search algorithms from Artificial Intelligence (Ibaraki, 1976; Ibaraki,
1978; Kumar and Kanal, 1983; Kumar et al., 1988). There is also a bibliography
on heuristic search from the branch-and-bound viewpoint (Stewart et al., 1994) that
covers literature up to the year 1992.

Search heuristics for Collin’s algorithm (Collins, 1975), a symbolic analogon
to the quantified constraint solving method of the author, have been developed by
H. Hong (1992).

7. Conclusion

We have studied box choice heuristics for various types for branch-and-bound al-
gorithms by providing a common framework for them. The author believes that the
presented framework provides an ideal basis for further exploration of heuristics
for box decomposition algorithms and even general space decomposition methods
in continuous domains.

Possible future work includes:

− Defining and studying a measure for the quality of merit functions that is more
fine-grained than just being weak or strong, and investigating whether there is
a merit function that is in some sense provably optimal

− Finding heuristics for other search decisions in the quantified constraint solv-
ing method developed by the author, such as choice of bisection direction
(Csendes and Ratz, 1997), choice of the optimal sub-constraint for connect-
ives, choice of the optimal box for approximate quantifiers (Ratschan, 2000a)
or for boxes corresponding to free variables.

− Investigating methods for finding a reasonable approximate optimum to use
for the reject index (e.g., by using local optimizers or numerical sampling).

− Analyzing further connections with results in game tree search.
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